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SUMMARY 

A very almple algorithm for flnaing a maximal flow 
and minimal cut In a tranoportatlon network 13 doucrlbod; 
It la then applied to obtain an efficient computational 
routine for the Hitchcock distribution problem. 
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A SIMPLK ALOORITHM FOR PINDINQ MAXIMAL KETWORK FLOWS AND 
AN APPLICATION TO TH3 HITCHCOCK PROBLEM 

L. R. PorM, Jr. 
D. R. Pulkeraon 

INTRODUCTION 

The network—flow problem, originally poaed by T. Harris 

of Ihe RAND Corporation, has been dlncuaeod frora various view— 

polnto In [l] , [^] , 1)1 , .,,[,■      • "-'■•' ^riaea naturally 

In the study cf tranaportal^on networks; it nay be stated In 

the following way.  One Is given a .otworlc of directed area 

and nodes with two dlatlngulahed nodoe, called aource and sink, 

respectively.1  All other nodes are called Intermediate♦  Each 

directed arc In the network, has associated with It a nonnosatlve 

Integer, Its flow capacity.  Source area may be aaaumed to be 

directed away from the aource, aink area Into the sink.  Subject 

to the conditions that the flow In an arc la In the direction 

of the arc and uoes not exceed its capacity, and that the total 

flow into any intermediate node is equal to the flow out of it, 

it la desired to find a maximal flow from aource to aink in the 

network, i.e., a flow which maxlmlzea the sum of the flows in 

source (or sink) arcs. 

1 A problem in which there are several aourcea and sinka, 
with flows permitted from any aource to any sink, la reducible 
to a single—«ource, »ingle—sink problem. 
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For example«  oonalcier the  network of  Fl^.   1   -vlth 

© 
i\ \ > \ 

py X;<S 

(f; Pli. 1 

source Pt, slnK P*, und arc capacltica   as indicated.  If wo 

let x. , denote tne flow from P;, to P,, the probieir. 19 to max- 

Imlze Xi2 + x^, the total flow leaving P^ subject to the 

equatlona a/id Inequalities 

Xia + x3a - x83 *■ x2«, 

Xv3 + Xaa ■ X32 -f Xj* , 

0 < Xia < ^, 

0 ^ Xis < 1 , 

0 <, Xas < 1, 

0 £ xS2 < 2, 

0 £ Xa« < 1, 

0 £ Xa* < ^. 

In general. If we let ?x   be tne source, Pn the slnx, we are 

required to find x1J(l,J - l,...n) which maximize 

(i)       I »u 
J-2  tJ 



oubjsct to 

(2)      7 (x1J - XJJ) - 0 (1 - 2,...,n-l) ( 

where the c. . are given nonnegative Integere, and, in particular, 

c4, - c . - 0 for all i, J. li   nj 
TTiie ie of oourse a linear programming problem, and hence 

may be eolved by Dantzig'» uimplex algorithm,  in füct, the 

Bimplex computation for a problem of this kind ia particularly 

«ffioient, since it can be ehown that the sets of equations one 

solves in the proceos are always triangular [2].  However, for 

the flow problem, we shall describe what appears to be a con- 

siderably more efficient algorithm; it is, moreover, readily 

learned by a person with no special training, and may easily 

be mechanized for handling large networks.  We believe'that 

problems involving more than t300 nodes and ^,000 arcs are 

within reach of present computing machines . 

Of some theoretical interest is the fact that the procedure 

assures one of obtaining a strict increase in the total flow at 

each step (in contrast with the simplex method).  In addition, 

the Hitchcock problem can be solved via the flow algorithm in a 

way which naturally generalizes the combinatorial method recently 
0 

proposed by Kuhn [7] for the optimal-assignment problem. Informal 

tests by hand indicate that this way of solving the Hitchcock 

problem ia extremely efficient. 
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l'  COWPPTATION OF  MAXIMAL PLOW. AM EXAMPLS 

In order to illustrate the computational procedure, before 

describing it in general terms, let us return to the example of 

Fig. 1.  start out with any flow from source to sink, say a flow 

of 1 along the chain Pl p. pa p4.  We describe this flow by Fig. 

2 below. 

Fig. 2 

where the remaining or unused capacity from ?1   to P  is denoted 

by the number slosest to P1 on the arc P1 Py     Notice, for example, 

that the new capacity from P. to Pa has be«n decreased by 1, and 

the capacity from P, to P, has been inoreaaed by 1.  That is to 

•ay, we must rx^w allow the possibility, in constructing successive 

flows, of imposing a flow of 2 from P, to P., one unit of which 

would cancel the present fjow of 1 from P. to PB.  Now start 

with the source and look for nodes which may be reached "in one 

step" by arcs of strictly positive remaining capacity.  Here we 

may proceed only to P«.  When a node has been reached, label it 
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ln oome fashion; then take a labeled node not previously 

examined, and look for unlabeled nodee which may be reached 

In one »tep by arcs of positive remaining capacity. -Here we 

may proceed from P. only to P..  Repeat the procedure until 

either (a) the alnk has been labeled, or (b) no further nodee 

may be labeled and the sink has not been labeled.  In our example, 

case (a) occurs at the next step.  We may now search back« through 

labeled nodes, looatln« a chain from source to elnk along which 

an additional flow «ay be imposed.  Hare we have the chain PxP.PaP*, 

and a flow of 2 may be Imposed.  We thus obtain Fig.  5 below 

Pig. ^ 

from Fig. 2 by alternately subtracting and adding 2 to the 

numbers encountered along the chain P^.P.Pe.  Next repeat the 

labeling procedure.  This time we can label only Pi and Pa, 

and are thus in case (b).  This means that w. have obtained a 

maximal flow, depicted in Fig. ^• 

« m the general description of the algorithm to be given 
presently, we will carry enough information along to make the 
backward search unnecessary. 
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Flg. k 

Ttim  proof that thi« flow Is maxlaal In this case Is • 

Immediate, for observe that the directed area PiP«, PaP», Pa?4 

leading from labeled nodes to unlabeled nodes are all saturated 

and form a cut In the network; I.e., every directed chain from 

source to sink contains one of these directed arcs.* Since It 

is clear that the sum of capacities of arcs forming a cut, which 

we refer to as the value of the cut. Is an upper bound for flow 

values, and since we have achieved equality of flow value and a 

cut value, the flow Is maximal and the directed arcs PjPa. Pa?»» 

PeP« constitute a minimal out. I.e., a cut of minimal value. 

2.  THE MINIMAL CUT THEOREM 

A nonconstruotlve proof of the minimal cut theorem, which 

asserts equality of maximal flow value and minimal cut value, 

has been given by the present writers In [5].  Subsequently a 

constructive proof based on the simplex criterion of linear 

•The definition of cut given here corresponds to that of 
disconnecting set given in [3]• 
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programalng was developed [2,5].  The algorlth» which we describe 

more formally In the next section aiso provides a constructive 

proof of the theorem.  Like the simplex algorithm. It produces 

not only a maximal flow but a minimal cut as well.  T^ls will 

be important for our application to the Hitchcock problem. 

It should perhaps be pointed out that an undirected problem, 

by which we mean that the directions of flow in intermediate 

arcs are not specified, so that the capacity constraints on 

these arcs are of the form 

xiJ * XJ1 ^ C1J     (1' J " 2'''n~li   i0) ' (3) 

presents nothing new,   since  we may  replace  each undirected arc 

by  a pair of oppositely directed  arcs,  each  with capacity equal 

to  that of the orijinal  arc|   I.e..   replace   (3)  by 

xiJ ^ C1J   ' 

(M xJi^clJ   * 
Por,  given X«   -  (x^)   satisfying   (4)   and  the  cons'ervation equations 

at  intermediate nodes,   setting 

(3) »u  - ««   <xij - xJi'0) 

yields sn equivalent flow X - (x^) satisfying these equations 

md  (3) • 
The minimal cut theorem is true for undirected networks as 

well as for directed networks, or, more generally, for mixed 

networks in which some intermediate arcs are directed, others not, 

the obvious changes in definition, of cut. and chains having been 
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maxla.  Thlo follows from  the comment« above and the fact, 

easily proved, that the minimal out value Is the same for a 

mixed network and its equivalent directed network.  The theorem 

is still valid when capacity constraints on nodes are admitted, 

where a cut now, of course, includes nodes as well as aros. 

'Ails may be proved by splitting each node into two nodes as 

suggested in Pig. 5 

Fig. 5 

and placing the capacity o of the old node on the new directed 

arc Joining the two new nodes, thus obtaining an equivalent 

network with capacity constraints on aros only.  For a direct 

proof of the theorem in this general form, see [2] . 

>.  THB ALQORITHM 

We start the computation from any convenient initial flow 

whatsoever.  The initial flow is used to define a starting 

matrix A - (aii) ^y letting a., be the capacity of the arc from 

P, to P. diininlshed by the flow from P. to P. and increased by 

the flow from P. to P..  If no other flow is readily available, 

one may ttart with the zero flow, corresponding to A - C, where 

ciJ ie the or^8inal capacity from P. to P.. 
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(It Is the opinion of tho authors that if the problem 

is given in matrix form, no speoial attempts should be made 

to obtain a good starting solution.  If, on the other hand, 

the problem can be pictured readily as a linear graph, a "floodirig" 

idea described in [l] night be used to obtain a starting flow. 

By following the approach suggested in [l], which, however, 

calls for the exercise of Judgment, an initial flow can be 

obtained that often is optimal for simple networks.  If not, 

it might be used as a good starting point for initiating the 

procedure given in this paper.) 

We are assuming that the notation has been chosen so that 

Pi is the source, P the sink.  For certain values of J - l...,n 

we shall define labels v.,/*.  recursively as follows. 

Let v, - oo , /*! • 0.  For those J such that a. . > 0, define 

v. • a. .,/*.- 1.  In general, from those i which have received 

labels V\'u<   but which have not previously been examined, select 

an i and scan for all J such that u,, > 0 and v ,,/< have not 

been defined.  For these J, define 

(6) VJ  " raln  <vi'  ftij)'/UtJ  " l- 

Continue this process until v ,M    have been defined, or until 

no further definitions may be made and Vn»/*^ have not bean 

defined.  In the latter case the computation ends.  In the former 

case, proceed to obtain a new a.. matrix as follows 

Replace «^ by VyrVn ^ ^  by ^ n In general. 
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replace  a     / by »     i - V    and a.       by  a. ,        vwl   where  each J 

Is  the /^j,   of  the  preceding  J1   In  the  bacvcward   replacement. 

Thl»  replacement  continues  until/«    ■   i   hao  been completed. 

The   labels  vj» ^j   are  then  recomputed  on  the  basis  of the  new 

A matrix and  the  process  Is   repeated. 

Notice   that  vn  Is  a positive   Integer,   and  hence   the  process 

terminates.     Upon  termination,   the maximal   flow X la  given by 

defining 

(7) x^  - max   (c^ - a^,   0), 

as  we  now  prove. 

Lemma   1.     X  le   a  flow. 

Proof.     Clearly 0  <, Xj.  ^ o^.,   since   a^  2. 0-     It  remains 

to show that X satisfies Y   {Xj. - x     )   - O for  1 - 2,...,n-l. 

Now the process  ensures   that  c..  -♦-  o.1  -  a. .  -♦-  a  ..     It. follows 

from  this  and  the  definition of  X that 

^ <xij -V ml (0ij - aij) • 

It  therefore suffices to  prove  that Y a. ,   is  Invariant,  for 
J       J 

1  - 2,...,n-l,  under thfc   computation,   as  certainly V  (c..  — a«<)   ■  0 

for the  starting point  A - C.     But  If  1   (/  i,n)   is  the My of 

some -i ,  then there   is a k m^^'     Thuo,   for  this  1,   the new a' 

are either equal  to  the  old  a. ,  or  are  given by 

'aiJ " vn       for  J  " *' 

alJ  "        ^alJ  ^ Vn       for  J  " k' 

otherwise; 
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V^'V^ hence 

Lemma 2.  X is a maximal flow. 

Proof. At the point where tenrilnatlon occurs, we have 

defined a set S of nodes, consisting of those nodes p. for 

which V^A». have been defined} and further, ?i ^ S, P 4 S. 

Consider the set p of directed arcs P«?, such that P. ^ S, 

P, 4- S.4 Clearly a. . • 0 for such pairs 1,J, as otherwise 

we would have defined v., /< . 

5 
We will show that P Is a out whose value is equal to 

/ 
xi1' thu* proving that X Is a maximal flow and   a minimal 

out. 

That P Is a out Is clear.  For If there were a chain 

PtPj^ ...P^ Pn with the arcs P^ 4   P #•••# Pi Pn ^ ^   ' 

then we could deduce suooesalvely (since P<^S) that P4 CS,...,P f'S, ' ijn 

a contradiction.     To  see  that   \    has  value equal to  the  flow 

value« notice that 

r 
0 (1   < 1 < n). 

X1J      ^   -   ^ 
I  (C1J  * aiJ)   "   < 
J 

Now sum these equations over those 1 for which P.(S.  On the 

left side. If P. and P. are both In S, then c^, - a^ and 

c  — a., are both In the summation and are negatives of each 

other.  All that remains are terms of the form c^, - Sj,, where 

P^S, P. ^ S.  Por these, as we pointed out above, a1, - 0. 

* TYie set ""la actually the set of "left arcs" defined 
In [5]. 
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Thua  th«  aura on  the  loft  reduces  preclaely  to   the   Bum of 

capacities  of members  of   P*   ,  as   was  to  bo   shown. 

We  append a  simple  example,   using  the  matrix  format  instead 

of  a pictur« of  the network,   to  illustrate  the  computation in 

this  form. 

Sxample 

A,   -  C  - 

A. 

As  - 

A4  - 

A. 

Ü 
0 
0 
0 

1 2 

i 0 

Lo0 

2 
1 
0 

2 
1 
2 

2 
0 

2 
2 

4 
2 
2 

2 

2 

2 
0 

1 

2 
1 

1 
4 

2 
1 

1 

2 
1 

2 
2 
3 

0^ 
2 
1 
4 

2 
2 

0 
2 
J5 

O 
0 
3 

0 
0 
0 
4 

0 i 
0 
2 

0^ 
0 

0' 

CJD 

4 
2 
2 
2 

2 
1 
2 
2 

CD 

2 
1 
2 
2 

uo 
1 
1 
1 

0 
1 
1 
1 
2 

2 2 2 0 CO 0 
4 2 0 2 1 

4 5 1 2 1 
2 2 4 2 1 
2 0 0 1 1 3 

0 
1 
1 
1 

0 
1 
1 
2 
>i 

0 

1 
5 

I 
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ThuB the computation terminates with As, giving a total 

flow of 7. Tt\9  minimal cut oomprloaa the area 15# 25* >5# ^5i 

with value 7. 

k,     THg HITCHCOCK PRQBLSM 

The Hltohcock traneportatlon problem Is perhaps one of 

the "most solved" linear programming problems In existence. 

We shall propose yet another computation for the problem which 

will amount to solving a sequence of flow problems of a partic- 

ularly simple kind. The  basic Idea, which sterna from a proof 

given by Kgervary [k]   for a theorem of König [6, p. 2.52] on 

linear grapha, has been used by Kuhn [7] to develop a very 

efficient combinatorial algorithm for the optimal assignment 

problem, a special case of the Hltohcock problem.  Our method 

differs only in details from the Kuhn algorithm in this case. 

We take the Hitchcock problem in the following form:  Qiven 

a matrix D • (d11) of nonnegative Integers, and two sots of 
^J m       n 

nonnagatlve  integers (»t,...,«^), (bl#...,bn)f with Z ai - I bj» 

it is desired to find a matrix X - (xij) satisfying the constraints 

xiJ ^ 0' 

(8) ^ xiJ " ai ' 

^ X1J - bJ 

which minimizes the linear form 

(9) ih*1**"     ' 
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A physical Interpretation of the problem 18 that there are D 

originating points for a commodity, the 1th point having a. 

unit«, and n deetlnatlona, the J  one requiring b. units.  If 

djj Is the cost, per unit of commodity, of shipping from origin 

1 to destination J, find a shipping program of minimal cost. 

The dual of the Hitchcock problem la:  Plnd CC^,  ß    satis- 

fying the constraints 

(10)     ^ > 

which maximize 

(ID 

^ ^ ^u (1 - 1,.. . ,m; J - 1,...,n) 

The proof that the algorithm to be described yields a solution 

to the Hltchcoclc problem will be based on the fact that the dual 

form (11) increases by at least on« unit with the solution of each 

successive flow problem. 

Each of the flow problems will be of the following form. 

Find X « (xii) satisfying 

(12) 

:ij ^ 0 ' 

C1J I *1.1 ^ ai ' 

• 0 for a given set S\- of pairs 1,J, 'U 

which maximizes 

(15) I    x 
l.J U* 
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Thl»  Is  aotually  a epeoial Hitchcock problem.     To   aee  that  It 

Is  also  a flow problem,  set up  the directed network of m + n ■♦■ 2 

nodes  shown  In Pig.  6, 

Source 

Pig.   6 

,5 i n k 

where the capacity on the directed arc F^, Is zero If l,Jt./I , 

large otherwise, the capacities of source and sink arcs are the 

a, and b,, as shown, and Interpret Xj, as the flow from P^^ to Qj. 

To solve such a problem we may of course use the computation 

of Section J involving, in this case, anm + n-»-2bym + n-»-2 

matrix.  It is possible (and computationally convenient) to de— 

acribs the process in terms of an m by n array.  The verification 

that the two descriptions are the same for this particular class 

of problems will be left to the reader. 

Let X be a solution of the constraints (12).  Corresponding 

to certain of the rows 1 « 1,...,m of X we will define integers 

v*»/-1,! slallarly, for certain of the columns J - l,...,n we will 
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deflne Intagers my *y    These definitions will be made re- 

cursively; first a set of v^ /^ will be defined, from those a 

set of w,, A,  will be defined, and so forth, alternating between 

the rows and columns. 

For those 1 such that £ x^ < a^ define 

U*)   vi - ai "I xij'^i *0 • 
J 

Mext sslect an 1 which has been labeled and scan for all (unlabeled) 

J such that l,Jill; for these J, define 

(15) wj - V AJ " 1- 

Repeat until the previously labeled 1•s are exhausted.  We then 

select a labeled J and scan for unlabeled 1 such that x^ > 0; 

for these 1, define 

(16) Vj^ - mln {x^y   «j).^i " J* 

Repeat until the previously labeled J'.s are exhausted.  Again 

select one of the i's Just labeled, look for unlabeled J such 

that l,Ji/l , and define Wj, Aj by (15).  Continue in this fashion, 

using (15) and (l6) alternately until either w^, Aj have been 

defined for some J with T x^ < bj. or until no further defini- 

tions may be made.  In the latter case X is maximal j in the 

former we can get an Improvement as follows.  Let 

(iY)     v - min (Wj, bj " ^ xlj) * 

Alternately add and subtract v from the sequence 
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(18) 
SJ' V1'XllJi, XliJ* Xlk-iJk'Vk' 

Aj Ji it Ja " Je—1   ' 

lk - Aj   ,   arid /^j^ - O. 

gxampla. 

1       2 
 1  

3 

SI 
J 

6       7 8 £10       al     v ^ 

2 

3 

5 

8 

—4- 

9 
10 

iS^ 
Q. 

32 
n 

M 
_SL 

mr^Di 
^. 

.    — 

_@J i©_ 
Id 

mnzun 
&. 

_Q4 

2_ 

5 

J- 

© 
to-'o ^ 

m 8 

JL±_6_ 

l 
1 
6 

8      9 
1 
1 

2 
1 

„iq 

2 3 
2 

9 

Cells containing a circle comprise -TL (the complement of 

J^L  ).  The entries wltnln the olrolea (zeros elsewhere) con- 

stitute an X satisfying the constraints (12).  The defining pro- 

cess terminates with w« - 1 # >>» - ^ # since column 3 la a column 

In which the sum of the entries x^^ Is less than b,-; I.e., 3 ■♦■ 3 < 9 
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The  sequence  along which an   Improvement  of mln   (ws.ba  —Tx     )   -   1 
Y    is 

can be nuule  Is x*^  - 3,   x4l   -  I,  xri   - 0,   XT.  -   I,  x,8 - 0#   aa 

la  easily  read off using  the ^'s  and A^a  alternately. 

We  ai*e now In a position to describe  a general routine   for 

the  Hitchcock problem.     As  a starting point,   form the  difference 

matrix 

(19) 'ij-«!-^, 

where a^ - mln d^, ^ - mln (d^ - a^. TMMB  d      - ^ - ^ ^ 0; 

i«««» öCJ^, /5j satisfy the dual constraints (10). Ttxe  next step 

1» to solve the flow problem with 

(20) n- {lj|d1J -a1 - ^ > o| . 

If the maximizing flow X satisfies    x. . - 7 a,, then X Is a 
i.J  ^  T 

minimizing solution to the original Hitchcock problem,8 If, on the 

8 Tills Is easily deduced as follows.  Observe first of all 

that for any c^, 0 ,   the two Hitchcock problems with cost matrices 

dlj ^d djj ~ ^l _ ^j aro equivalent; for T  Xj^. - a., 

I  *1J - "j ***  "».t ^ (d^ -c<1 - ^) Xu   .  gi^ 

~ 4- &1   ^i. ~ % bj   Py   an<i  tho   la8t  two  8Um0  on  the  right  ax^ 

Independent of x^.     Thus  if  we have  o^,   f   with d1    -d^ - f   ^ o. 

and  are  able  to  find an X satisfying   (8)  and  x. .   - 0 for 1J€-O- , 

then clearly X »IMailee    J  (d1J - ^ - *J)X1J.  henoe  minimizes 
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other hand, ^ *u < ^ a1, let I be the Index eet of the labeled 

rowa of X, J the Index set of the labeled column^ and define new 

dual variable» by 

o^  ■► k 

c^'   • 

(21) 

'V- 
r^j -* 

ßi 

(i€i), 

(i i i) ; 

(J c J), 

(J 4 J), 

where k 
" Hi   (dl/J  ~Ä1 -  ^j)-     "otlce   that  k  > 0,   alnce palra 

i*J   with  it I,   j^j  are  contained  in   ./I. 

Proof.     The  fact  that  X la  a maximal   flow impllea   that 

| XiJ  "  bJ   for J£J-     klBO'   the  labeling procesa  enaurea  that 
xiJ   " a for 1^1'   J^»  a«d#  ao  »»• have mentioned earlier,  x      -  ( 

for 1£I,   J4J.     since  all  i  with T x^   < a1  are  in I,   it followa 

that ^ 

litai * & jLx^ - jL "J • 
and hence  th. n*» dual for» haa bean Increased by the  ajnount 

kt ill 'i " J^J  »  > 0  • 
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Anothor way  to  see  thl«  lo   to note  that   the  minimal  cut  in 

the  aaooclated network   (Fig.  6)  has  value    7 «^ +   Z    bJ  < ^ al* 

and hence    T    a<   >    T    ^ i   • 

Now form the new difference matrJLx d^^. — oCj^ - /?j   > 0 by 

subtracting 1c from the  I—rows  of  the  previous  dlffaronce  tnatrljc, 

and  adding k to  the  J—columns.     We may now take  the maximal  flow 

X of  the previous  flow problem  as  a  starting point  In  the  new 

flow problem and proceed as  before. 
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